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A theory containing both electric and magnetic charges is formulated using two 
vectors potentials, A' and CC This has the aesthetic advantage of treating 
electric and magnetic charges both as gauge symmetries, but it has the experi- 
mental disadvantage of introducing a second massless gauge boson (the "mag- 
netic" photon) which is not observed. This problem is dent with by using the 
Higgs mechanism to give a mass to one of the gauge bosons while the other 
remains massless. This effectively "hides" the magnetic charge, and the symme- 
try associated with it, when one is at an energy scale far enough removed from 
the scale of the symmetry breaking. 

1. I N T R O D U C T I O N  

Since the seminal work of  Dirac (1931, 1948) magnetic  monopoles  
have excited much theoretical interest, but  there has been no confirmed 
experimental evidence o f  their existence up to the present. Dirac 's  formula-  
t ion requires the introduct ion o f  a singular vector po ten t ia l  so that  the 
definition B = V x A, may  be use& while still having V- B = Pm, where Pm 

is the magnetic  charge density. The vector potential A is singular along a 
line which runs f rom the magnetic  charge off to spatial infinity. By 
requiring that  the string singularity have no phys ica l  effect (i.e., the 
wavefunct ion o f  a charged particle must  vanish along it), one arrives at 
Dirac 's  condit ion for the quant izat ion o f  electric charge. A fiber-bundle 
formulat ion o f  magnetic  monopoles  has been given by Wu and Yang  
(1975) which avoids the need for a singular vector potential,  but  defines the 
vector potential differently in two different regions surrounding the mag- 
netic charge. The two vector potentials are related by a gauge t ransforma-  
tion, and requiring that  the gauge t ransformat ion function be single-valued 
yields the Dirac quant izat ion condit ion again. 
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In this article we present a different formulation of a magnetic charge 
based upon the gauge principle. Electric charge is a gauge charge which is 
coupled to a gauge field, the photon, by replacing the ordinary derivative with 
the gauge-covariant derivative in the Lagrangian. In electrodynamics the 
gauge field corresponds to the four-vector potential A~. Since the generalized 
Maxwell equations with electric and magnetic charges appear symmetric 
between the two types of charge and currents, one might ask if it is possible 
to treat magnetic charge, like electric charge, as a gauge symmetryl The gauge 
principle then implies that there must be a second massless gauge boson 
corresponding to magnetic charge. In the next section we will show that 
Maxwell's equations with electric and magnetic charges naturally have room 
for two four-vector potentials A, and C,. One is then left with two massless 
photons, while only one massless photon is known to exist experimentally. 
This difficulty can be overcome through the use of the Higgs mechanism 
(Higgs, 1964a,b, 1966), which allows one to make gauge bosons massive while 
not violating the gauge invariance of the theory. This allows the charge which 
is coupled to the massive gauge boson to remain "hidden" as long as one is 
not too near the energy scale of the symmetry breaking. 

There have been previous attempts to construct a field theory of 
magnetic charges in terms of a pair of four-potentials by Cabibbo and 
Ferrari (1962) and Zwanziger (1971), but the second vector potential has 
always been somewhat problematic since then there are apparently too 
many degrees of freedom. Spontaneous symmetry breaking allows one to 
deal with these extra degrees of freedom in a natural way. 

2. GENERALIZED MAXWELL EQUATIONS AND DUALITY 

The generalized Maxwell equations in the presence of electric and 
magnetic charges and currents are (Jackson, 1975) 

V . E = p ~  V x  +J~ 
C 

(1) 
V ' B = p m  - V •  ~ B + J m ) c  -~- 

These equations are invariant under the following duality transformation: 

E ~ E cos 0 + B sin 0 
(2) 

B ~ - E  sin 0 + B cos 0 

Pe ~ Pe COS 0 +Pm sin O, Pm - - "  - -  Pe sin 0 + Pm COS 0 
(3) 

Je ~ Je COS 0 + Jm sin 0 Jm ~ - -  J e  sin 0 + J,, cos 0 
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Now one can introduce two four-vector potentials A~ = (~be, A) and 
C" = (q~m, C) and write the E and B fields as 

E =  -V~be V x C  
c ~t 

1 OC (4)  
B = - V ~ b . ,  - - - -  + V • A 

c ~3t 

In electrodynamics with only electric charge E consists of only the first two 
terms, while B consists of only the last term. Taking ~be as a scalar and A 
as a vector under spatial inversion leads to E being a vector and B being 
a pseudovector under spatial inversion. In order for E to remain a vector 
and B to remain a pseudovector in equation (4), ~b m must be a pseudoscalar 
and C a pseudovector. Using the gauge freedom which is possessed by the 
potentials, one can chose A ~' and C ~ such that they satisfy the Lorentz 
gauge condition 

1 t3~e 
0uA~ = - - -  + V ' A  = 0  

c c~t 

o c, = -1 (5) 
c ~t + V . C = 0  

On substituting the expressions for E and B in terms of the potentials (4) 
into the generalized Maxwell equations (1), using the two Lorentz gauge 
conditions (5), and applying some standard vector calculus identities 
( V . [ V  x a] = 0, V x [Vd#] = 0 ,  and V x [V x a] = V[V. a] -V2a) ,  one ar- 
rives at the following alternative form for the equations: 

1 (~2~b e 1 Eq~m 
V2~be c2 ~t 2 - - - - P e  V2(~m C2 Ot 2 Pm 

1 02A 1 1 c~2C 1 (6) 
-- Je  V2C c 2 - Jm V2A c 2 Ot 2 c Ot 2 c 

From here on we will set  c = 1. Since q5 m is a pseudoscalar and C a 
pseudovector, equations (6) imply that the magnetic charge density pm and 
magnetic current density Jm are pseudoscalars and pseudovectors, respec- 
tively. The significance of (6) is that it demonstrates t h a t  Maxwell's 
equations with both electric and magnetic charges naturally allow for two 
four-vector potentials (i.e., two "photons").  It is desirable to cast our 
results to this point in covariant notation in terms of the two four-poten- 
tials A" and C u in order to be able to obtain a Lagrangian density for the 
generalized Maxwell equations. Defining two field strength tensors in terms 
of the two four-vector potentials 
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Fr = O~A ~' _ a , 'AU 
(7) 

G ~ " =  ~ C "  - ~ C  ~ 

one can write the Maxwell equations with magnetic charge, equations (6), 
in the following covariant form: 

O,F"" = O ~ " A "  = J ~  
(8) 

pV ~t 'r u G3. G = ~ u c  O C = Jm 

where the Lorentz gauge of equation (5) has been used. 
The duality transformations (2) and (3) can now be written in terms of 

the four-potentials and four-currents 

A ~ A "  cos 0 + C ~ sin 0 
(9) 

C " ~  - A ~  sin 0 + C "cos 0 

j~ _.+ j r  _~ cos 0 + J~  sin 0 
(10) 

J~., ~ - J ~  sin 0 + J~  cos 0 

Finally the E and B fields of (4) can be written in terms of the field-strength 
tensors as 

Ei = F iO -k- ~ 8iJkGjk = F iO -- ~#io 

(ll) 
1 e~j~Fj k = Gg o + ~ o  B i = G io __ 

where 

1 

(12) 

~"~'P~ is the totally antisymmetric fourth-rank Levi-Civita tensor, where 
e0J23= +1 with even permutations of the indices giving +1 and odd 
permutations giving - 1 .  Here  ~ '  and f#u" are the duals of F ~' and G "'. 
From (11) it looks as if two "photons"  are contributing to the E and B 
fields. However, using spontaneous symmetry breaking via a scalar field, 
one of the "photons"  is made massive, thus effectively reducing the above 
definitions to their usual form of E,. = F i~ and Bi = �89 as long as one 
is not too close to the energy scalar of the breaking. 

I t  is now straightforward to write down a Lagrangian density which 
gives the Maxwell equations (8). These equations are simply two copies of 
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the same equation with the source of one being an electric four-current Je ~ 
and: the source of the other being a magnetic four-current J~.  Thus the 
most obvious thing to do is to add a new kinetic term and a new source 
term for the four-potential C ~, 

1 F~, 'Fu" 1 ~; 5 Y ~ -  4 - ~ G , , . G - J e A u - J ~ m G ~  (13) 

Variation of this Lagrange density with respect to A" and C ~ yields the field 
equations (8) in the Lorentz gauge. This Lagrangian is invariant under the 
duality transformation of (9), (10). This property will be used in the next 
section. Also the Lagrangian is a scalar despite the fact that it contains 
pseudoquantities (J~m and C~), since these quantities only occur in combina- 
tions which result in real scalars under parity. 

One drawback to this simple extension of the usual Maxwell Lagran- 
gian is that it does not yield the expected energy-momentum tensor in 
terms of the E and B fields as defined in (11). In particular, one would 
expect there to be cross terms between the field-strength tensors F "v and G ~'v 
coming, for example, from T OO 1 2 �9 =~(E  + B  2) with the use of (11). In 
addition (13), while giving the correct Maxwell equations, makes it appears 
as if the electric and magnetic four-currents are completely decoupled from 
one another, contrary to physical intuition that an electric charge and 
magnetic charge would interact with One another. However, the Lagrange 
density and energy-momentum tensor are not unique. One is free to add 
any "four-divergence to the Lagrangian without changing the Maxwell 
equations, and one is also free to add any four-divergence with the proper 
antisymmetry property (Goldstein, 1980) without changing the conserva- 
tion laws or integral quantities associated with the energy-momentum 

1 epVpa F tensor. By adding 7-~ . ,,,vp~ to t h e  Lagrangian one mixes the two 
"photons" and obtains the usual energy-momentum tensor with all the 
cross terms that are implied by (11). Adding ~V~ to the Lagrangian 
does not change the Maxwell equations (8) obtained from the Lagrangian, 
since it is a total four-divergence by the antisymmetry property of e ~v;'. In 
this paper we will not explicitly write this cross term in the Lagrangian, 
since all we require for the present development is the minimal Lagrangian 
that yields the Maxwell equations. 

3. THE SCALAR H E L D  

The Lagrangian formulation of Maxwell's equations as expressed in 
(13) possesses the theoretically pleasing feature of treating electric and 
magnetic charge symmetrically, but has the experimentally displeasing 
feature of  introducing a second massless gauge boson. This second gauge 
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boson (and the symmetry associated with it) can be "'hidden" using the 
Higgs mechanism. First one introduces a complex scalar field �9 which 
carries a scalar electric charge qe and a pseudoscalar magnetic charge q,, 
and must be gauged with respect to both the four-vector and pseudo 
four-vector potentials (A ~ and C~). The Lagrangian is 

s  = ( ~  + i q e A ,  + iqmC~)ag*(O ~ - iq~A ~ - -  iq, ,C~)eO - V(r 

I 

where ~* is the complex conjugate of ~. The form of the gauge-covariant 
derivative in equation (14) is that of Zwanziger (1971) here applied to a 
scalar field rather than a spinor field. The electric and magnetic four- 
currents J$ and J~ of equation (13) can be written in terms of the scalar 
fields as 

J~ = iqe[Cb*(D"~) - -  ~ ( D ' * ~ ) * ]  
(15) 

J ~  = iqn,[ ~O*(D~b) - -  ~(D,'~b)*] 

where D" = (0 u - iq~A" --  iq,, C ~) is the gauge-covariant derivative. Since q~ 
and q,, are scalar and pseudoscalar quantities, respectively, it follows from 
(15) that J~ and J~ are a real four-current and a pseudo-four-current. 
respectively. The gauge group of the above Lagrangian is U(1)•  U(t) 
(Carmeli, 1982), which is not a semisimple group. This leads one to suspect 
that there will be no quantization condition between electric and magnetic 
charges. The potential V(~ 2) contains the usual mass and quartic self- 
interaction terms in order to develop a VEV, 

g((I) 2) = m2((I)*(I)) q- )~((I)*~) 2 (16) 

The self-interaction coupling constant 2 is taken to be positive definite, and 
for m 2 < 0 the potential acquires a vacuum expectation value of 

<r = - ,fi 
Parametrizing the complex field in terms of real fields with the VEV chosen 
to lie along the real component yields 

1 
r = ~ (v + n(x) + ir 

t 
: ~ ~ (v + ~(x))e ' ~ ' '  (18) 

, /2 
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Now using the gauge freedom of the Lagrangian in (14), one can transform 
the ((x) field away by making a gauge transformation to the unitary gauge 

1 
~ ' ( X )  = e -i~(x)/v(~(x) = ~ (D -~- l~(x))  

"v 

1 
A'.(x) = A.(x) - ~ ~ ( x )  (19) 

C~(x)  = C~(x) - ~s~ ~(x) 

&a s is invariant under these transformations. Substituting these unitary 
gauge fields into (14) yields 

50s = 500 + 501 (20) 

where 50o contains the kinetic energy and mass terms 

1 1 2 2 1 F '  F 'pv - -  ! ~rr t ~r'P v 
5~ = ~ (8,,r/)(O"q) + ~ (2m)q -- ~ _ ~ _  4 - " ~ -  

+ ~ v2(q2eA'.A'~ + q~C'uC'u + 2qeqmA~,C' '") (21) 

t t �9 �9 where F,,. and Guy indicate that the field-strength tensors are in terms of the 
gauge-transformed fields and C'~. Note that both the field-strength tensors 
and therefore the equations of motion derived from them are invariant 
under the gauge transformations (19). The interaction terms of the Lagran- 
gian 50z are 

2 2 , ,. q2mC, C,. , ,~ 50i = --2vv3 --~ rl 4 + vrl(qeA~A + + 2qeqmA~C ) 

rl 2 
+'- f  t'72A'A'~,.~e-~- + q,,,2 C~' C" + 2qeq,,,A'~,C'O (22) 

A disturbing feature in both equations (21) and (22) is the presence of the 
t t cross terms between A, and C,, which makes finding the mass spectrum of 

the gauge bosons after symmetry breaking complicated. Also it appears 
that both gauge bosons have become massive even though only one scalar 
degree of freedom has been absorbed. However, one can now use the 
freedom of the duality transformation (9) to diagonalize away the cross 
terms A'.C" in both 50o and 5 0 1 "  One can write the gauge boson mass 
terms and gauge boson-scalar interaction terms in the form of 2 • 2 
matrices, 

( q~ qeq"~{A'~'~ (23) K(A'vC'.) q ,. q~ .]\C'U.] 
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where K = v2/2, V, 1/2 for the gauge boson mass, trilinear interaction, and 
quartic interaction terms, respectively. Now applying a duality transforma- 
tion as in (9) with cos 0 = q,,,/(q~ + q2,,,)~/2 and sin 0 = qe/(q~ + q2m)~/2 the 
mass matrix and interaction matrices are diagonalized 

. . . .  �9 I~ 0 
K(A~C")\O (q~ +q,,))\C2 ,,~) (24) 

The double primes indicate that these are the duality-rotated fields which 
t ! are obtained from A u and C~, which are themselves the gauge-transformed 

fields of the original A, and C~. However, as the Lagrangian is invariant 
under both the gauge and duality transformations, we will from here on 
drop the primes. This diagonalization of the mass matrix by a duality 
rotation is the same procedure that is used in the standard model 
(Glashow, 1961; Weinberg, 1967; Salam, 1968) to obtain the physical mass 
spectrum of the electroweak gauge bosons. One potential problem is the 

1 p/tvpa ~I7 (.-~. per cross term 8 ~ . ,,.~ , which is gauge invariant, but is not invariant under 
the duality rotation. Since it is a total divergence, with no effect on the field 
equations, it could be added to the Lagrangian at any point [i.e., it could 
be added to the final Lagrangian, equation (25) below]. Alternatively, one 
could add it to the original Lagrangian (14) with a coefficient in front 
chosen so that after the duality rotation it would become ls"V~ The b Iz' p ' 

original particle spectrum of two massless gauge bosons and two scalar 
field has, through the Higgs mechanism, become one massive scalar field, 
one massless gauge field, and one massive gauge field. Writing out the final 
form of the Lagrangian gives 

1 1 2m 2 ~ 1F., F ~ - I G ~ G ~ v  s = ~ (~r/)(cq"r/) + ~ ( )r/- - ~ , 4 

1 2 2 1 g2C~C.rl 2 __ ~Uf~ 3 2 ~/4 (25) c"c" --4 

where g = (qe 2 + q~) t/2 is the coupling strength of the scalar field to the 
gauge boson C~,. The scalar field ~/(x) can be said to carry a magnetic 
charge of strength g, whose associated symmetry is broken leading to the 
gauge boson connected with it, C~, having a mass, mc = gv. Therefore, the 
scalar r/(x) will have a Yukawa field rather than a Coulomb field surround- 
ing it, and the magnetic charge will not be detectable unless one, probes 
down to distances of  the order of r = 1/m c. Notice that A~ is now 
completely decoupled from the scalar field r/(x) and that the Lagrangian 
(25) only has one charge, g. This corresponds to the well-known result that 
if all particles in a theory have the same ratio of electric to magnetic charge 
it is always possible to use the duality rotation (10) to rotate away one of 
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the charges. In order to make both electric and magnetic charges play a 
nontrivial role, one could introduce a second complex scalar field O2(x) 
with no self-interaction and whose original couplings q'~ and q" are 
different from qe and q,,. The field q)2(x) would have to undergo a phase 
rotation, in conjunction with (19), in order to allow its Lagrangian to 
remain invariant. [This phase transformation would depend on qe, qm, q'~, 
q;,, V, and ~(x), but the explicit expression is not given, since we will not 
pursue this point in detail here.] On performing the duality rotation, the 
gauge boson-q~2(x) interaction matrices would in general include couplings 
between both components of (I) 2 and both gauge bosons. Thus ~2(x) would 
represent two real scalar fields carrying both electric and broken magnetic 
charges, whose values would depend on the arbitrary values q'~ and q ' .  

4. DISCUSSION AND CONCLUSIONS 

In this paper we have attempted to give a formulation of magnetic 
charge as a gauge symmetry which is "hidden" through spontaneous 
symmetry breaking: This was done through the introduction of two gauge 
potentials, A~ and C~. The presence of two massless gauge bosons in the 
Lagrangian was resolved by introducing a complex scalar field ~(x) and 
using the Higgs mechanism to give a mass to one of the gauge bosons while 
leaving the other one massless. Thus the existence of the massive gauge 
boson and the symmetry associated with it was hidden as long as one was 
at an energy scale less than the mass of the gauge boson, m c .  

Although this formulation of magnetic charge appears to be very 
different from Dirac's (1931, 1948) approach, there is a certain correspon- 
dence: In Dirac's formulation the string is an extra, nonlocal degree of 
freedom which is "hidden" through the Dirac quantization condition; in 
the present formulation the "magnetic" photon is an extra, local degree of 
freedom which is "hidden" through the Higgs mechanism. One difference 
between this formulation and previous formulations, which involved either 
singular potentials (Dirac, 1931, 1948) or gauge potentials which are 
defined differently over different domains (Wu and Yang, 1975), is that we 
do not obtain a charge quantization condition. However, both grand 
unified gauge theories and Kaluza-Klein theories give alternative explana- 
tions for the quantization of charge, so this loss of an explanation for 
charge quantization might not be so unpleasant. The broken charge 
g = (q~ + q~,) 1/2 that is carried by q depends only on the unconstrained (at 
the classical level) values of qe and qm. 

There is much arbitrariness in this formulation of a magnetic charge: 
the charge g, the mass of y/, the mass of the gauge boson, and the 
self-coupling of q are all unspecified. The aim of this paper was not to 
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construct a fully realistic model of a physical monopole, but to give a 
treatment where magnetic charge is treated, initially, exactly as electric 
charge, and then provide an explanation for the nonobservation of the 
symmetry associated with the magnetic charge. An interesting possibility of 
this formulation is to use it to construct fermions out of bound states of 
scalar particles carrying a broken magnetic charge and scalar particles 
carrying an unbroken electric charge. If the bound state were bound to a 
radius smaller than r = 1/mc, then the electric charge would "see" most of 
the broken magnetic charge. There would be an angular momentum 
associated with the bound state (Saha, 1936, 1949; Wilson, 1949) which 
would depend on g, mc, the electric charge, and the size of the bound state. 
(For a system with an unbroken magnetic charge and electric charge the 
angular momentum is independent of the distance between the two charges, 
but with a broken magnetic charge; the closer the electric charge got, the 
more magnetic charge it would "see"). The gauge couplings and symmetry 
breaking could then be adjusted so as to let one interpret the angular 
momentum of the charge-monopole system as the spin of the bound state. 
Finally it has been shown that a charge-monopole system obeys Fermi- 
Dirac statistics (Goldhaber, 1976). It is plausible to postulate that this 
result would still hold if the magnetic charge of the monopole were 
"hidden" through spontaneous symmetry breaking. 
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